برگ بندی های ریمانی تکین روی خمینه های با انحنای نامثبت

پایان نامه
چکیده

در این پایان نامه نشان می دهیم که برگ بندی ریمانی تکین کامل برش پذیر روی خمینه های فشرده با انحنای نامثبت وجود ندارد. سپس یک توصیف کلی از برگ بندی ریمانی تکین کامل برش پذیر را روی خمینه های هادامارد ارائه می دهیم. با استفاده از قضیه غوطه ور سازی، یک اثبات کوتاه از این نتیجه را در مورد برگ بندی های حاصل از عمل های قطبی ارائه می دهیم.

منابع مشابه

برخی قضیه های تجزیه برای خمینه های با انحنای نامثبت

در این مقاله می کوشیم برخی قضیه های تجزیه را برای فضاهای رده صفر که گروههای حاصلضربی به صورت هندسی روی آنها عمل میکنند بدست آوریم همچنین یک قضیه تجزیه را برای فضاهای ژئودزیکی فشرده با انحنای نامثبت ارائه میکنیم.

15 صفحه اول

دورهای تحلیلی روی خمینه های مختلط

سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.

متن کامل

نامساوی های تغییراتی روی خمینه های ریمانی

در این تحقیق مسئله ی نابرابری های تغییراتی را روی خمینه ی ریمانی مطرح می کنیم و پس از آن به بررسی وجود و یکتایی جواب برای مسئله ی نابرابری های تغییراتی روی خمینه های ریمانی می پردازیم و مسئله ی باز مطرح شده در این زمینه را مورد بررسی قرار می دهیم. هم چنین ارتباط بین مسئله ی نابرابری تغییراتی و مسئله ی بهینه سازی مقید را بیان می کنیم. مفاهیم افزایندگی و یکنوایی را روی خمینه های ریمانی تعریف نمود...

خمینه های ریمانی با انحنای ثابت منفی و نقص همگنی کوچک

فرض کنیم m خمینه ی ریمانی با انحنای ثابت و منفی،و g گروه لی از ایزومتریهای آن باشد که با نقص همگنی دو روی آن عمل کند. در این پایان نامه ما گروههای بنیادی و مدارهای m را بررسی می کنیم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023